NEPP Electronic Technology Workshop June 11-12, 2013

National Aeronautics and Space Administration

Radiation Qualification of Flash Memories

Dakai Chen

Code 561 NASA Goddard Space Flight Center

Outline

- Purpose of the test guideline
- Key considerations
- Single event effects (SEE)
- Proton susceptibility
- Total ionizing dose (TID)
- Combined effects (TID + Reliability)
- Lessons learned

Purpose

- Provide guidance to space flight programs and technology developers for radiation testing and qualification of nonvolatile memories (NVMs), with emphasis on modern flash memory devices
- Key contributors: Tim Oldham primary author, Steve Buchner, Ken LaBel

How to Test Flash Memory?

- What are you looking for?
- Know the environment what type of particles will the part be exposed to?
- How will you operate the Flash throughout the mission?
- How to select beam parameters?
- What is the degradation mechanism?

SEE Testing

- ASTM F1192 Standard Guide for the Measurement of Single Event Phenomena (SEP) Induced by Heavy Ion Irradiation of Semiconductor Devices
- Determine the applicable operation modes
- Understand the error modes
- Heavy ion testing and alternative sources
- Susceptibility to protons

ASTM International, known until 2001 as the American Society for Testing and Materials (ASTM)

Operating Conditions

- Operation modes
 - Static mode (powered and unpowered), dynamic Read, dynamic Read/Write, dynamic Read/Erase/Write
- Pattern sensitivity
 - 0 to 1 errors common than 1 to 0 errors
 - Checkerboard pattern ideal to check for both error types
- Frequency sensitivity
 - Not a challenge due to the lower operating speeds relative to volatile memories

SEE Error Modes

- Single bit upset
 - Memory cell charge leakage
- Multiple bit upset
 - Typically due to control circuit error
- Stuck Bits
 - Micro-dose effects
- Functional Interrupt
 - Control logic error leading to large scale errors (page or block errors)
- Functional Failure

TAMU = Texas A&M University; MSU = Michigan State University; R/E/W = Read/Erase/Write operation

Dynamic mode (R/E/W)

T. R. Oldham, et al., IEEE Trans. Nucl. Sci., vol. 53, no. 6, pp. 3217-3225, Dec. 2006.

Functional Failure

- Destructive events can be caused by Single Event Gate Rupture (SEGR) or Single Event Latchup (SEL)
- Micro-latchups and SEGR can result in current spikes
- Signal contention can also cause SEL resulting in current spikes (multiple ion effect)
- Sensitive components located in the peripheral control circuits
 - Current spikes do not necessarily originate from the charge pump
 - Combinatory logic vulnerable to signal contention

Micro-latchup

Signal contention

T.R. Oldham, et al., IEEE Radiation Effects Data Workshop Record, Las Vegas, NV, July 2011. pp. 152-160.

Heavy Ion Beam Parameters

- Choose ions with appropriate linear energy transfer (LET) and energy
 - Recommend test with at least four different effective LETs
- Flux should be kept low enough to prevent multiple ion effects
 - Signal contention can cause SEL resulting in current spikes
- Fluence should be high enough for sufficient coverage
 - Test standards typically require 1 × 10⁷ ions/cm²
 - Average of 1 ion per 10 μm²
 - Sufficient for deep submicron feature size technologies?
- Angular sensitivity
 - Increase in importance as feature size shrinks
 - May have greater impact for MLC devices

SEL = single-event latchup; MLC = multi-level cell

Other Sources to Evaluate SEE

Pulsed-Laser

- Allows ability to identify locations of sensitive components (target the control circuits)
- More cost effective than heavy ion testing
- Not feasible if topside penetration is difficult
- Two photon absorption for substrate penetration

• Milli-beam

- Greater precision than broad beam, less precision than laser
- Replicated some high current events; collective effects still possible

Protons Susceptibility

- Protons produce both SEE and TID (and Displacement Damage)
- When to evaluate for proton-induced SEE?
- Heavy ion upset threshold LET less than 15 MeV-cm²/mg
 - Maximum LET from nuclear recoils with silicon atoms
 - Limited range of recoil atoms relative to heavy ions
 - Inappropriate to evaluate destructive effects
- Not particularly sensitive to SEE based on limited test results

TID Testing and Combined Effects

- Test standard: MIL-STD-750 Test Method 1019
- Typically flash will remain in static bias (or unpowered) or standby mode for the majority of the mission duration
- Device characterization
 - Accumulated bit flips: Read only during exposures
 - Operational functionality: Cycled (R/E/W) during exposure
 - Large sample size can be a challenge (at least 5 for each condition)
- Does TID affect retention and endurance?

TID = total ionizing dose; R/E/W = Read/Erase/Write; CMOS = complementary metal oxide semiconductor

TID Degradation Characteristics

- Single bit errors are primarily 0 to 1 errors
- Bit line and word line errors cause multiple-bit errors
- Functional failure due to inability to perform block erase
- Annealing can correct some bit errors, but charge pump failures are difficult to recover

Combined Effects

T. R. Oldham, et al., IEEE Trans. Nucl. Sci., vol. 59, no. 6, pp. 3011-3015, Dec. 2012

- Parts will experience TID and aging in flight
- TID irradiation followed by 1000 hour life test: 10% overvoltage, 100°C
- Retention errors increase with increasing TID
 - Nonlinear dependence: 4x increase in dose caused 20x increase in errors
- Single bit errors dominate
- ECC expected to correct these errors

TID = total ionizing dose; ECC = error correcting code

Error Correction

- Most NAND flash will <u>NOT</u> meet its performance or reliability specifications without ECC
- Most SLC NAND have about 3% redundant memory for ECC
 - 8G NAND has pages 4Kx8, or 32 Kbits, with an additional 128 bytes (1024 bits) for ECC
- Simple Hamming code for a memory segment of 2^N bits requires N+1 bits for SEC (single error correction), or N+2 bits for SEC-DED (SEC-double error detection)
- ECC implementation is vital for on-orbit applications, however ECC will not resolve control logic errors

ECC = error correcting code; SLC = single-level cell (as opposed to MLC = multi-level cell)

TID Testing Lessons Learned

- Memory arrays are naturally robust against TID
- Control circuits are most vulnerable and critical
- Charge pump failures often determine TID hardness
- Necessary to cycle some parts in between doses to check for E/W functions
- TID can reduce retention over time, however errors correctable via ECC

SEE Testing Lessons Learned

- Choosing heavy ion beam parameters
 - Ion LET, energy and range
 - Keep flux low to avoid multiple ion effects
 - Irradiate to high fluence for good statistics—trade offs to make effective use of beam time
 - Highly scaled CMOS can be sensitive to angular effects
- Page/block errors and destructive events can originate from the control circuit
- Laser and milli-beam testing offer capability of better resolution to identify sensitive locations
- Proton sensitivity should be monitored closely

LET = linear energy transfer; CMOS = complementary metal oxide semiconductor; SEE = single-event effects

Backup Slides

Floating Gate Transistor

Drain

 Write (Program) operation—Fowler-Nordheim (FN) injection of electrons into FG

Source

- Erase operation—FN injection of electrons from FG to substrate
- Floating gate structure naturally hardened from charge leakage
- Control circuit elements, such as high voltage charge pumps, are more vulnerable to radiation-induced degradation

Flash Architectures

Why Flash?

- Most mature Non-volatile memory technology
 - Low cost per bit
 - High density
 - Low power consumption
- Attractive for space applications for the same reasons widely used in handheld, battery powered, consumer electronics
- Radiation response is variable, as one would expect for unhardened commercial technology, but often pretty good