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Outline 

• Purpose of the test guideline 
• Key considerations 
• Single event effects (SEE) 
• Proton susceptibility 
• Total ionizing dose (TID) 
• Combined effects (TID + Reliability) 
• Lessons learned 
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Purpose 

• Provide guidance to space flight programs 
and technology developers for radiation 
testing and qualification of nonvolatile 
memories (NVMs), with emphasis on 
modern flash memory devices 

• Key contributors: Tim Oldham – primary 
author, Steve Buchner, Ken LaBel 

To be presented by Dakai Chen at the NASA Electronic Parts and Packaging Program (NEPP) Electronics Technology Workshop (ETW), 
NASA Goddard Space Flight Center in Greenbelt, MD, June 11-12, 2013 and published on nepp.nasa.gov.  3 



How to Test Flash Memory? 

• What are you looking for? 
• Know the environment – what type of 

particles will the part be exposed to? 
• How will you operate the Flash throughout 

the mission? 
• How to select beam parameters? 
• What is the degradation mechanism? 
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SEE Testing 

• ASTM F1192 – Standard Guide for the 
Measurement of Single Event Phenomena (SEP) 
Induced by Heavy Ion Irradiation of 
Semiconductor Devices 

• Determine the applicable operation modes 
• Understand the error modes 
• Heavy ion testing and alternative sources 
• Susceptibility to protons 
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Operating Conditions 
• Operation modes 

– Static mode (powered and unpowered), dynamic Read, 
dynamic Read/Write, dynamic Read/Erase/Write 

• Pattern sensitivity 
– 0 to 1 errors common than 1 to 0 errors 
– Checkerboard pattern ideal to check for both error types 

• Frequency sensitivity 
– Not a challenge due to the lower operating speeds relative to 

volatile memories 
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SEE Error Modes 

• Single bit upset 
– Memory cell charge leakage 

• Multiple bit upset 
– Typically due to control 

circuit error 
• Stuck Bits 

– Micro-dose effects 
• Functional Interrupt 

– Control logic error leading 
to large scale errors (page 
or block errors) 

• Functional Failure 
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Static mode  

Dynamic mode (R/E/W)  

T. R. Oldham, et al., IEEE Trans. Nucl. Sci., vol. 53, no. 6, pp. 3217-3225, Dec. 2006. 

TAMU = Texas A&M University; MSU = Michigan State University; 
R/E/W = Read/Erase/Write operation 
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Functional Failure 
• Destructive events can be caused by Single Event Gate Rupture 

(SEGR) or Single Event Latchup (SEL) 
• Micro-latchups and SEGR can result in current spikes 
• Signal contention can also cause SEL resulting in current spikes 

(multiple ion effect) 
• Sensitive components located in the peripheral control circuits 

– Current spikes do not necessarily originate from the charge pump 
– Combinatory logic vulnerable to signal contention 
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Micro-latchup Signal contention 

T.R. Oldham, et al., IEEE Radiation Effects Data Workshop Record, Las Vegas, NV, July 2011. pp. 152-160. 
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Heavy Ion Beam Parameters 
• Choose ions with appropriate linear energy transfer 

(LET) and energy 
– Recommend test with at least four different effective LETs 

• Flux should be kept low enough to prevent multiple ion 
effects 
– Signal contention can cause SEL resulting in current spikes 

• Fluence should be high enough for sufficient coverage 
– Test standards typically require 1 × 107 ions/cm2  
– Average of 1 ion per 10 µm2  
– Sufficient for deep submicron feature size technologies? 

• Angular sensitivity 
– Increase in importance as feature size shrinks 
– May have greater impact for MLC devices 
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Other Sources to Evaluate SEE 

• Pulsed-Laser  
– Allows ability to identify locations of sensitive components 

(target the control circuits) 
– More cost effective than heavy ion testing 
– Not feasible if topside penetration is difficult 
– Two photon absorption for substrate penetration 

• Milli-beam 
– Greater precision than broad beam, less precision than laser 
– Replicated some high current events; collective effects still 

possible 
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Protons Susceptibility 
• Protons produce both SEE and TID (and Displacement 

Damage) 
• When to evaluate for proton-induced SEE? 
• Heavy ion upset threshold LET less than 15 

MeV·cm2/mg 
– Maximum LET from nuclear recoils with silicon atoms 
– Limited range of recoil atoms relative to heavy ions 
– Inappropriate to evaluate destructive effects 

• Not particularly sensitive to SEE based on limited test 
results 
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TID Testing and Combined Effects 

• Test standard: MIL-STD-750 Test Method 1019 
• Typically flash will remain in static bias (or 

unpowered) or standby mode for the majority of the 
mission duration 

• Device characterization 
– Accumulated bit flips: Read only during exposures 
– Operational functionality: Cycled (R/E/W) during exposure 
– Large sample size can be a challenge (at least 5 for each 

condition) 
• Does TID affect retention and endurance? 
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TID Degradation Characteristics 

• Single bit errors are primarily 0 to 1 errors 
• Bit line and word line errors cause multiple-bit errors 
• Functional failure due to inability to perform block erase 
• Annealing can correct some bit errors, but charge pump failures are 

difficult to recover 
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Combined Effects 

• Parts will experience TID and 
aging in flight 

• TID irradiation followed by 1000 
hour life test: 10% overvoltage, 
100oC 

• Retention errors increase with 
increasing TID 
– Nonlinear dependence: 4x 

increase in dose caused 20x 
increase in errors 

• Single bit errors dominate 
• ECC expected to correct these 

errors 
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T. R. Oldham, et al., IEEE Trans. Nucl. Sci., vol. 59, no. 6, pp. 3011-3015, Dec. 2012 
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Error Correction 
• Most NAND flash will NOT meet its performance or 

reliability specifications without ECC 
• Most SLC NAND have about 3% redundant memory 

for ECC  
– 8G NAND has pages 4Kx8, or 32 Kbits, with an additional 

128 bytes (1024 bits) for ECC 

• Simple Hamming code for a memory segment of 2N 
bits requires N+1 bits for SEC (single error 
correction), or N+2 bits for SEC-DED (SEC-double 
error detection) 

• ECC implementation is vital for on-orbit 
applications, however ECC will not resolve control 
logic errors 
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TID Testing Lessons Learned 

• Memory arrays are naturally robust against TID 
• Control circuits are most vulnerable and critical  
• Charge pump failures often determine TID hardness 
• Necessary to cycle some parts in between doses to 

check for E/W functions 
• TID can reduce retention over time, however errors 

correctable via ECC 
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SEE Testing Lessons Learned 
• Choosing heavy ion beam parameters 

– Ion LET, energy and range 
– Keep flux low to avoid multiple ion effects 
– Irradiate to high fluence for good statistics—trade offs 

to make effective use of beam time 
– Highly scaled CMOS can be sensitive to angular effects 

 

• Page/block errors and destructive events can 
originate from the control circuit  

• Laser and milli-beam testing offer capability of 
better resolution to identify sensitive locations 

• Proton sensitivity should be monitored closely 
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Backup Slides 
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Floating Gate Transistor 

Control Gate 

p - body 

Source Drain 

n+ n+ 

• Write (Program) operation—Fowler-Nordheim (FN) injection of 
electrons into FG 

• Erase operation—FN injection of electrons from FG to substrate 
• Floating gate structure naturally hardened from charge leakage 
• Control circuit elements, such as high voltage charge pumps, 

are more vulnerable to radiation-induced degradation 

FG 
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Flash Architectures 

NAND NOR 
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Why Flash? 

• Most mature Non-volatile memory technology 
– Low cost per bit 
– High density 
– Low power consumption 

• Attractive for space applications for the same 
reasons widely used in handheld, battery 
powered, consumer electronics 

• Radiation response is variable, as one would 
expect for unhardened commercial 
technology, but often pretty good 
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